Exam II MTH 418, Spring 2016

Ayman Badawi

QUESTION 1. (i) Let D be a connected planar graph and $\operatorname{cl}(D)$ be the closure graph of D. I claim that $c l(D)$ need not be a planar. Give me an example to support my claim.
(ii) We know that K_{5} is not a planar. Find the minimum number of edges that you need to remove from K_{5} so that the remaining graph is a planar (you are not allowed to remove vertices, only remove edges).
(iii) We know that W_{8} is a planar. Convince me CLEARLY that $\overline{W_{8}}$ (the complement graph of W_{8}) is not a planar.
(iv) Find a maximum matching set for Q_{3}. Does Q_{3} have a perfect matching set?
(v) For each $n \geq 3$, convince me that there is a connected graph, say H, that is Hamiltonian but neither Eulerian nor Eulerian trail and $\chi^{\prime}(H)=n$.
(vi) Give me an example of a connected Eulerian trail, say H, that is neither Hamiltonian nor Eulerian nor critical such that $\chi(H)=3$ and ONLY one vertex in the trail is visited twice. .
(vii) Let $H=K_{3}$ with vertex set $\left\{v_{1}, v_{2}, v_{3}\right\}, D=K_{3}$ with vertex set $\left\{w_{1}, w_{2}, w_{3}\right\}$. Consider the product graph $F=H \times D$. Find $\chi^{\prime}(F)$. Show that F is not planar [hint: construct a subgraph of F that is a subdivision of $K_{3,3}$]. Is F Eulerian? explain.
(viii) Let F be a connected graph such that $\chi(F)=\chi^{\prime}(F)+1$. Find all possibilities of F. Explain!

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

